Modulation of sulphonylurea block of K_{ATP} channels by adenosine nucleotides

Peter Proks Oxford Centre For Gene Function University of Oxford, UK

Stimulation of insulin secretion by sulphonylureas

The β -cell K_{ATP} channel

Dual action of sulphonylureas: 1.Direct block

Dual action of sulphonylureas: 1.Direct block

Dual action of sulphonylureas:

Dual action of sulphonylureas:

Dual action of sulphonylureas: 2. Suppression of activation by Mg-nucleotides

Dual action of sulphonylureas: 2. Suppression of activation by Mg-nucleotides

Dual action of sulphonylureas:

Questions:

- Suppression of nucleotide activation by sulphonylureas was investigated only for MgADP, not for MgATP
- What is the molecular basis for mechanism II ?
- Can sulphonylureas also affect the inhibitory effects of nucleotides?
- How is sulphonylurea efficacy affected in patients with K_{ATP} channel mutations ?
- Why patients with neonatal diabetes require higher doses of sulphonylureas compared to patients with type 2 diabetes?

1.Molecular mechanism for suppression of Mg-nucleotide activation of K_{ATP} channels by sulphonylureas

ATP-insensitive mutant (Kir6.2-G334D/SUR1) to study Mg-nucleotide activation in isolation from nucleotide inhibition

Gliclazide effect on the off-rates for Mg-nucleotide activation

Activatory effects of nucleotides on Kir6.2-G334D/SUR1 channels are absent in Mg²⁺-free solutions

2. Sulphonylurea modification of wild-type K_{ATP} channel gating by adenosine nucleotides

Gliclazide does not affect inhibition of wild-type K_{ATP} channels by ADP

Gliclazide does not affect inhibition of wild-type K_{ATP} channels by ADP

Gliclazide fully abolishes activation of wild-type K_{ATP} channels by MgADP

Gliclazide fully abolishes activation of wild-type K_{ATP} channels by MgADP

Gliclazide enhances inhibition of wild-type K_{ATP} channels by ATP in the absence of Mg²⁺

Gliclazide enhances inhibition of wild-type K_{ATP} channels by ATP in the presence of Mg²⁺

Gliclazide enhances inhibition of wild-type K_{ATP} channels by ATP in the presence of Mg²⁺

Gliclazide is without effect on ATP inhibition of Kir6.2/SUR1-KAKA channels

Enhanced inhibitory effect of ATP induced by gliclazide is likely to involve NBD1:

- ATP binding affinity (K_i=4µM) for NBD1 is much higher than that for NBD2 (K_i=60µM) so that it accounts more easily for gliclazide effects (*Matsuo et al., 2000 J Biol Chem* 275:28757).
- Gliclazide effects are present in Mg-free solution Unlike for NBD2, binding of ATP to NBD1 does not require Mg²⁺ (*Matsuo et al., J Biol Chem 1999* 274:37479).

CONCLUSIONS (1):

- Gliclazide suppresses binding of MgADP to NBD2
- Gliclazide impairs transduction mechanism by which MgADP binding to NBD2 promotes channel opening
- Gliclazide fully abolishes activation of wild-type K_{ATP} channels by MgADP
- Gliclazide enhances the inhibitory effect of ATP on wild-type K_{ATP} channels both in the absence and presence of Mg²⁺; this effect is likely to involve NBD1

 Effect of ATP on the efficacy of the high affinity gliclazide block of mutant K_{ATP} channels with impaired nucleotide inhibition

(1) Mutations in the putative inhibitory ATP binding site on Kir6.2 subunit

Kir6.2-G334D/SUR1 DEND syndrome

(neonatal diabetes with developmental delay and neurological features)

Kir6.2-R201C/SUR1 Permanent neonatal diabetes

Mg-free solution

Kir6.2-R201C/SUR1

Gliclazide suppresses MgATP activation without enhancing ATP inhibition

- Mg-containing solution
- Mg-free solution
 - Mg-containing solution + 30µM gliclazide

Mg-free solution + 30μ M gliclazide

Kir6.2-R201C/SUR1

Gliclazide suppresses MgATP activation without enhancing ATP inhibition

Kir6.2-R201C/SUR1

Gliclazide effectively inhibits Kir6.2R201C/SUR1channels in the physiological range of ATP concentrations

(2) Mutations that impair channel gating

Kir6.2-V59M/SUR1 i-DEND syndrome

(neonatal diabetes, developmental delay and muscle weakness)

Simulation of the direct block by gliclazide for channels with different values of open probability

V59M mutation impairs ATP sensitivity of the K_{ATP} channel

Mg-free solution

Gliclazide abolishes MgATP activation and slightly enhances ATP inhibition

Gliclazide abolishes MgATP activation and slightly enhances ATP inhibition

Gliclazide effectively inhibits Kir6.2-R201C/SUR1 channels in the physiological range of ATP concentrations

Kir6.2-I296L/SUR1 DEND syndrome

(neonatal diabetes with developmental delay and neurological features)

Kir6.2-I296L/SUR1

Gliclazide suppresses MgATP activation without substantially affecting ATP inhibition

Mg-containing solution + 30µM gliclazide

Kir6.2-I296L/SUR1

Gliclazide poorly inhibits Kir6.2-I296L/SUR1 channels

4. Reduction of gliclazide binding to SUR1 by adenosine nucleotides

MgATP increases the value of IC₅₀ of high affinity block of gliclazide in excised patches

ATP reduces inhibitory effect of gliclazide The mechanism involves nucleotide binding to NBD2

MgATP increases the value of IC₅₀ of high affinity block of gliclazide in excised patches

In the intact cell, the IC₅₀ for high affinity gliclazide block is higher for mutant Kir6.2-G334D/SUR1 channels than for Kir6.2/SUR1 channels

CONCLUSIONS (2):

- K_{ATP} channels with mutations that cause mild impairment of ATP inhibition can be efficiently closed by gliclazide; channels with mutations that cause severe impairment of ATP inhibition can't.
- Gliclazide effectively abolishes MgATP activation in K_{ATP} channels with ND mutations
- Gliclazide-induced enhancement of the inhibitory effect of ATP is largely suppressed by ND mutations; this suppression may contribute to increased doses of sulphonylureas used in the treatment of this disease
- Mg-nucleotide binding to NBD2 impairs gliclazide binding to the high affinity binding site on SUR1

Acknowledgments:

Frances Ashcroft

Heidi De Wet Mathilde Lafond

wellcometrust

I have yet to see any problem, however complicated, which, when looked at in the right way did not become still more complicated.

> Poul Anderson (1926 -2001) American science-fiction writer

IC₅₀ of high affinity block of gliclazide is further increased in the intact cell

Kir6.2-I296L/SUR1

Kir6.2/SUR1

DAMN: Decline of Activation by Magnesium Nucleotides

Comparison of the effects of gliclazide and the double KAKA mutation on activation of Kir6.2-G334D/SUR1 channels by MgADP

Comparison of the effects of gliclazide and the double KAKA mutation on activation of Kir6.2-G334D/SUR1 channels by MgATP

Concentration-response relationships for inhibition of wild-type K_{ATP} channels by ATP in the presence and absence of Mg²⁺

Concentration-response relationships for inhibition of wild-type K_{ATP} channels by ATP in the presence and absence of Mg²⁺

